domingo, 23 de septiembre de 2007

experimentos

EXPERIMENTO #2 la agua con sal y colorante

MATERIAL
recipiente con agua
NaCl3
colorante
PROCESO
Realiza una solución sobre saturada de NaCl
A;ade el colorante a la solución que realizaste
Mezcla lentamente con ayuda del chorro de agua

QUE fue lo que ocurrio

Se puedo observar levemente la formación de dos fases o bien el agua con colorante se quedo abajo y sobre de ella e agua con menos colorante pero aun así difícilmente se aprecia.
CONCLUSIÓN:

Se debe a la densidad ya que el agua con sales es mas pesada

EXPERIMENTO #3
MATERIAL
recipiente con agua
agua
una papa en rodajas

PROCESOS
1.- Realiza una solución sobre saturada de cloruro de NaCl
2.- Dentro del recipiente que contiene la solución colócala papa en rodajas
3.- Observa lo que sucede

La papa se hace blanda y suelta como una sustancia blanca (almidón)

CONCLUSIÓN:

Este fenómeno se debe a la plasmolisis, en este caso la papa se satura de sal y como los almidones tiene la propiedad de retener sales pues la papa se deshidrata mas ra[ido ya que contiene gran cantidad de sal.

EXPERIMENTO #4


MATERIAL:
1.- cubeta con agua ¾ partes de agua2.-
2 coca-colas (una normal y una Light)


1.- Sobre la cubeta con agua soltar delicadamente las coca-colas y observa q es lo q sucede

Se puedo observar que la coca- cola normal se hunde pero la coca-cola Light no se hunde

CONCLUSIÓN:este fenómeno se debe ala densidad de las coca-colas ya que la Light es menos densa que la normal por el azúcar

sábado, 22 de septiembre de 2007

agua

PropiedadesAcción disolvente

El agua es el líquido que más sustancias disuelve, por eso decimos que es el disolvente universal. Esta propiedad, tal vez la más importante para la vida, se debe a su capacidad para formar puentes de hidrógeno con otras sustancias que pueden presentar grupos polares o con carga iónica (alcoholes, azúcares con grupos R-OH , aminoácidos y proteínas con grupos que presentan cargas + y - , lo que da lugar a disoluciones moleculares). También las moléculas de agua pueden disolver a sustancias salinas que se disocian formando disoluciones iónicas.En el caso de las disoluciones iónicas, los iones de las sales son atraídos por los dipolos del agua, quedando "atrapados" y recubiertos de moléculas de agua en forma de iones hidratados o solvatados. La capacidad disolvente es la responsable de dos funciones:Medio donde ocurren las reacciones del metabolismoSistemas de transporte


Elevada fuerza de cohesión

Los puentes de hidrógeno mantienen las moléculas de agua fuertemente unidas, formando una estructura compacta que la convierte en un líquido casi incompresible. Al no poder comprimirse puede funcionar en algunos animales como un esqueleto hidrostático, como ocurre en algunos gusanos perforadores capaces de agujerear la roca mediante la presión generada por sus líquidos internos.


Propiedad de expandirse al enfriarse

El agua es una de las pocas sustancias que se expande al enfriarse. Esto se debe a que, al congelarse, sus moléculas se organizan en una estructura hexagonal, dejando más espacios vacíos entre ellas que en el agua liquida. Esta estructura de los cristales del hielo también es responsable de las peculiares formas hexagonales de los copos de nieve.Elevada fuerza de adhesión Esta fuerza está también en relación con los puentes de hidrógeno que se establecen entre las moléculas de agua y otras moléculas polares y es responsable, junto con la cohesión del llamado fenómeno de la capilaridad. Cuando se introduce un capilar en un recipiente con agua, ésta asciende por el capilar como si trepase agarrándose por las paredes, hasta alcanzar un nivel superior al del recipiente, donde la presión que ejerce la columna de agua , se equilibra con la presión capilar. A este fenómeno se debe en parte la ascensión de la savia bruta desde las raíces hasta las hojas, a través de los vasos leñosos.



Gran calor específico



También esta propiedad está en relación con los puentes de hidrógeno que se forman entre las moléculas de agua. El agua puede absorber grandes cantidades de calor que utiliza para romper los puentes de hidrógeno por lo que la temperatura se eleva muy lentamente. Esto permite que el citoplasma acuoso sirva de protección ante los cambios de temperatura. Así se mantiene la temperatura constante.

Elevado calor de vaporización

Sirve el mismo razonamiento, también los puentes de hidrógeno son los responsables de esta propiedad. Para evaporar el agua, primero hay que romper los puentes y posteriormente dotar a las moléculas de agua de la suficiente energía cinética para pasar de la fase líquida a la gaseosa. Para evaporar un gramo de agua se precisan 540 calorías, a una temperatura de 20°C.Propiedades importantes para los organismosEl agua tiene propiedades inusualmente críticas para la vida: es un buen disolvente y tiene alta tensión superficial. El agua pura tiene su mayor densidad a los 3,98°C: es menos densa al enfriarse o al calentarse, ya que al llegar a convertirse en agua sólida (hielo) las moléculas se unen y forman una figura como un panal, lo que la hace menos densa. Como una estable molécula polar prevalente en la atmósfera, tiene un importante papel en la atmósfera como absorbente de radiación infrarroja, crucial en el efecto invernadero. El agua también tiene un calor específico inusualmente alto, importante en el regulamiento del clima global.El agua es un buen disolvente y disuelve muchas sustancias, como las diferentes sales y azúcares, y facilita las reacciones químicas lo que contribuye a la complejidad del metabolismo. Algunas sustancias, sin embargo, no se mezclan bien con el agua, incluyendo aceites y otras sustancias hidrofóbicas. Membranas celulares compuestas de lípidos y proteínas, toman ventaja de esta propiedad para controlar las interacciones entre sus contenidos y químicos externos. Esto se facilita en parte por la tensión superficial del agua.Las gotas de agua son estables debido a su alta tensión superficial. Esto se puede ver cuando pequeñas cantidades de agua se ponen en superficies no solubles como el vidrio: el agua se queda junta en forma de gotas. Esta propiedad es importante en la transpiración de las plantas.Una propiedad del agua simple pero ambientalmente importante es que su común forma sólida, el hielo, flota en el líquido. Esta fase sólida es menos densa que el agua líquida debido a la geometría de los fuertes enlaces de hidrógeno formados solo a temperaturas bajas.Para casi todas las demás sustancias y para todas las otras once fases no comunes del hielo de agua excepto ice-XI, la forma sólida es más densa que la forma líquida. El agua fresca presenta la máxima densidad a 3,8 °C, ascendiendo por convección tanto cuando su temperatura aumenta como cuando disminuye desde ese valor. Este revés causa que el agua profunda permanezca más caliente que la ligera agua congelada, por lo que el hielo en un cuerpo de agua se formará primero en la superficie y crecerá hacia abajo, mientras que la mayor parte del agua bajo del hielo permanecerá a 3,8 °C. Esto efectivamente aísla el fondo de un lago del frío exterior.

agua

EL AGUA
En química, el agua es un compuesto formado por dos átomos de hidrógeno y uno de oxígeno. Su fórmula molecular es H2O.El agua cubre el 72% de la superficie del planeta Tierra y representa entre el 50% y el 90% de la masa de los seres vivos. Es una sustancia relativamente abundante aunque solo supone el 0,022% de la masa de la Tierra. Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biosfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso.Se halla en forma líquida en los mares, ríos, lagos y océanos. En forma sólida, nieve o hielo, en los casquetes polares, en las cumbres de las montañas y en los lugares de la Tierra donde la temperatura es inferior a cero grados Celsius. Y en forma gaseosa se halla formando parte de la atmósfera terrestre como vapor de agua.
Características físicas

El agua no tiene olor, sabor, ni color. Para obtener agua químicamente pura es necesario realizar diversos procesos físicos de purificación ya que el agua es capaz de disolver una gran cantidad de sustancias químicas, incluyendo gases.Se llama agua destilada al agua que ha sido evaporada y posteriormente condensada. Al realizar este proceso se eliminan casi la totalidad de sustancias disueltas y microorganismos que suele contener el agua; es prácticamente la sustancia química pura H2O.El punto de ebullición del agua a la presión de una atmósfera, que suele ser la que hay al nivel del mar, es de 100 ºC, y su punto de congelación es de 0 ºC. La densidad máxima del agua líquida es 1 g/cm3, alcanzándose este valor a una temperatura de 3,8 ºC; la densidad del agua sólida es menor que la del agua líquida a la misma temperatura, 0,917 g/ml.El agua tiene una tensión superficial muy elevada. El calor específico del agua es de 1 cal/ºC·g
El agua es considerada un disolvente universal, ya que es el líquido que más sustancias disuelve, lo que tiene que ver con que es una molécula polar. Las moléculas de agua están unidas por lo que se llama puentes de hidrógeno.Se dice del agua que es una molécula polar porque presenta polaridad eléctrica, con un exceso de carga negativa junto al oxígeno compensada por otra positiva repartida entre los dos átomos de hidrógeno; los dos enlaces entre hidrógeno y oxígeno no ocupan una posición simétrica, sino que forman un ángulo de 104º 45'.
agua es un termorregulador del clima, gracias a su elevada capacidad calorífica.
elevada tensión superficial hace que se vea muy afectada por fenómenos de capilaridad.
Presenta un punto de ebullición de 373 K (100 °C) a presión de 1 atm.Tiene un punto de fusión de 273 K (0 °C) a presión de 1 atm.El agua pura no conduce la electricidad (agua pura quiere decir agua destilada libre de sales y minerales)Es un líquido inodoro e insípido. Estas son las propiedades organolépticas, es decir, las que se perciben con los órganos de los sentidos del ser humano.Se presenta en la naturaleza de tres formas, que son: sólido, líquido o gas.Tiene una densidad máxima de 1 g/cm3 a 277 K y presión 1 atm. Esto quiere decir que por cada centímetro cúbico (cm3) hay 1g de agua.Forma dos diferentes tipos de meniscos: cóncavo y convexo.Tiene una tensión superficial, cuando la superficie de los líquidos se comporta como una película capaz de alargarse y al mismo tiempo ofrecer cierta resistencia al intentar romperla y esta propiedad ayuda a que algunas cosas muy ligeras floten en la superficie del agua.Posee capilaridad, que es la propiedad de ascenso o descenso de un líquido dentro de un tubo capilar.La capacidad calorífica es mayor que la de otros líquidos.El calor latente de fusión del hielo se define como la cantidad de calor que necesita un gramo de hielo para pasar del estado sólido al líquido, manteniendo la temperatura constante en el punto de fusión (273 k).Calor latente de fusión del hielo a 0 °C: 80 cal/g (ó 335 J/g)Calor latente de evaporación del agua a 100 °C: 540 cal/g (ó 2260 J/g)
Propiedades quimicas

Su importancia reside en que casi la totalidad de los procesos quimicos que ocurren en la naturaleza, no solo en organismos vivos sino tambien en la superficie no organizada de la tierra, asi como los que se llevan a cabo en laboratorios y en la industria tienen lugar entre sustancias disueltas en agua. El agua es disolvente universal puesto que todas las sustancias son de alguna manera solubles en ella.No posee propiedades ácidas ni básicas.Con ciertas sales forma hidratos.Reacciona con los óxidos de metales formando bases.Es catalizador en muchas reacciones químicas

lewwis

EL CONCEPTO DE LEWIS

Lewis determinó una base como una sustancia que posee un par de electrones sin compartir, con el cual puede formar un enlace covalente con un átomo, una molécula o un Ion. Un ácido es una sustancia que puede formar un enlace covalente aceptando un par de electrones de la base. Las sustancias que son bases en elsistema de Bronsted también son bases de acuerdo con el sistema de Lewis. No obstante, la definición de Lewis de un ácido amplía el número de sustancias que se clasifican como ácidos. Un ácido de Lewis posee un orbital desocupado capaz de aceptar pares de electrones de la base. Las especies químicas que funcionan como ácidos de Lewis, incluyen las siguientes: Las moléculas o átomos que poseen octetos incompletos Varios cationes sencillos Algunos átomos metálicosLos compuestos que tienen átomos centrales capaces de extender sus niveles de valencia

acidos y bases

EL CONCEPTO DE ARRHENIUS
Este concepto define a un ácido como un compuesto que produce iones H+ en solución acuosa y una base como un compuesto que produce iones OH- en una solución de agua. La fuerza de un ácido o una base se determina por el grado de disociación del compuesto en agua. Un ácido o base fuerte es aquél que se disocia completamente en los iones de agua.Los óxidos de muchos no metales reaccionan con el agua para formar ácidos y, consecuentemente, se llama óxidos ácidos o anhídridos de ácido. Ejemplo: N2O5 + H2O & 2H+ + 2NO-3 Los óxidos metálicos se disuelven en el agua para formar hidróxidos. Los óxidos metálicos se llaman óxidos básicos o anhídridos de bases. Ejemplo: Na2O + H2O & 2Na+ +2OH- Los óxidos ácidos y básicos reaccionan en ausencia de agua para producir sales. No obstante se debe indicar que no todos los ácidos y bases pueden obtenerse de óxidos (HCl y NH3 son ejemplos)
El CONCEPTO DE BRONTED LOWRY
Según este concepto un ácido es una sustancia que puede donar un protón y una base es una sustancia que puede aceptar un protón. La reacción de un ácido con una base, es la transferencia de un protón del ácido a la base, es la transferencia de un protón del ácido a la base. En la reacción: HC2H3O2 + H2O & H3O+ + C2H3O2- La molécula de ácido acético, HC2H3O2, actúa como un ácido y cede un protón a la molécula del agua, la cual actúa como una base. Esta reacción es reversible como indica la doble flecha. En la reacción inversa (de derecha a izquierda) el Ion H3O+ dona un protón al Ion C2H3O2-. El Ion H3O+, por lo tanto, actúa como un ácido y el Ion C2H3O2- como una base pues acepta el protón. En la reacción hacia la derecha, la base H2O gana un protón y se transforma en el ácido H3O+ y, el ácido H3O+ en la dirección inversa pierde un protón y se convierte en la base H2O. Un par de ácido-base como éste, relacionado mediante la ganancia o pérdida de un protón se le llama un par conjugado. Similarmente el HC2H3O2 y C2H3O2- forman un segundo par ácido-base conjugados. A estas sustancias que actúan como ácidos en ciertas reacciones y como bases en otras se llaman anfipróticas Fuerza De Los Ácidos Y Bases De Bronsted La fuerza de los acidasen términos de Bronsted, se determina por su tendencia para donar protones y la fuerza de una base depende de su tendencia para aceptar protones. La reacción: Ácido1 Base2 Ácido 2 Base1 HCl + H2O & H3O + Cl- Se concluye que HCl es un ácido más fuerte que H3O+, debido a que el HCl al donar su protón (H+) automáticamente se quedo sin más protones o Hidrógeno mientras que el H3O+ al donar su protón a la base Cl- todavía le quedo dos más (H+) a eso se refería Bronsted con la tendencia de donar protones. El H2O es una base más fuerte que Cl- , debido a que la molécula del agua tiene éxito en retener prácticamente todos los protones; se pude notar en que el agua tiene dos protones (H+) y el Cl- ninguna. Un ácido fuerte, que presenta una gran tendencia a perder protones, está conjugado con una base débil, la cual tiene pequeña tendencia para ganar y retener protones; mientras más fuerte el ácido más débil será la base conjugada. Similarmente, una base fuerza atrae protones y es conjugada necesariamente a un ácido débil, uno que no pierda protones rápidamente; entre más fuerte sea la base, más débil será el ácido conjugado.La fuerza de los ácidos y la estructura molecular.-Se dividirán los ácidos en dos tipos: hidruros covalentes y oxiácidos. Hidruros: influyen dos factores sobre la fuerza de acidez del hidruro de un elemento: la electronegatividad del elemento y el tamaño atómico del elemento. El primero de esto estos factores se comprenden mejor comparando los hidruros de los elementos de un periodo. El segundo cobra importancia cuando hacen las comparaciones en un grupo.a).- Hidruros de los elementos de un periodo. Las fuerzas de acidez de los hidruros de los elementos de un periodo aumentan de izquierda a derecha a través del periodo en el mismo orden que aumentan las electronegatividades de los elementos.b).- Los Hidruros de los elementos de un grupo. La acidez de los hidruros de los elementos de un grupo aumenta con el aumento en el tamaño del átomo central. Oxiácidos. Los oxiácidos son compuestos que se derivan de la estructura:a bH-O-Z La clave de la acidez de estos oxiácidos radica en la electronegatividad del átomo Z. Si Z es un átomo de un metal con baja electronegatividad, el enlace electrónico entre el átomo Z y el Oxigeno (el enlace b) pertenecerá al Oxígeno, el cual tiene una alta electronegatividad. Si Z es un átomo de un no metal de una alta electronegatividad, el enlace indicado b será un enlace covalente fuerte y no un enlace iónico. En vez de aumentar la densidad electrónica alrededor del átomo de oxígeno, Z tendrá a reducir la densidad electrónica, el átomo de oxígeno removerá la densidad electrónica de este enlace H-O, apartándolo del átomo de hidrógeno, lo cual permite al protón disociarse y hacer ácido al compuesto.

el ph

pH
En 1909 el químico danés Sørensen definió el potencial hidrógeno (pH) como el logaritmo negativo de la actividad de los iones hidrógeno. Esto es:Desde entonces, el término pH ha sido universalmente utilizado por la facilidad de su uso, evitando así el manejo de cifras largas y complejas. En disoluciones diluidas en lugar de utilizar la actividad del ion hidrógeno, se le puede aproximar utilizando la concentración molar del ion hidrógeno.Por ejemplo, una concentración de [H+] = 1 × 10–7 M (0,0000001) es simplemente un pH de 7 ya que : pH = –log[10–7] = 7El pH típicamente va de 0 a 14 en disolución acuosa, siendo ácidas las disoluciones con pH menores a 7, y básicas las que tienen pH mayores a 7. El pH = 7 indica la neutralidad de la disolución (siendo el disolvente agua). Se considera que p es un operador logarítmico sobre la concentración de una solución: p = –log[...] , también se define el pOH, que mide la concentración de iones OH-.Puesto que el agua está disociada en una pequeña extensión en iones OH– y H+, tenemos que:Kw = [H+][OH–]=10–14en donde [H+] es la concentración de iones de hidrógeno, [OH-] la de iones hidróxido, y Kw es una constante conocida como producto iónico del agua.Por lo tanto,log Kw = log [H+] + log [OH–]–14 = log [H+] + log [OH–]14 = –log [H+] – log [OH–]pH + pOH = 14Por lo que se puede relacionar directamente el valor del pH con el del pOH.En disoluciones no acuosas, o fuera de condiciones normales de presión y temperatura, un pH de 7 puede no ser el neutro. El pH al cual la disolución es neutra estará relacionado con la constante de disociación del disolvente en el que se trabaje.
Medida del pHEl valor del pH se puede medir de forma precisa mediante un pHmetro, un el phinstrumento que mide la diferencia de potencial entre dos electrodos: un electrodo de referencia (generalmente de plata/cloruro de plata) y un electrodo de vidrio que es sensible al ión hidrógeno.También se puede medir de forma aproximada el pH de una disolución empleando indicadores, ácidos o bases débiles que presentan diferente color según el pH, como la Fenolftaleína. Generalmente se emplea papel indicador, que se trata de papel impregnado de una mezcla de indicadores.A pesar de que muchos potenciómetros tienen escalas con valores que van desde 1 hasta 14, los valores de pH pueden ser menores que 1 y mayores que 14.Un pH igual a 7 es neutro, menor que 7 es ácido y mayor que 7 es básico.El pH de disoluciones concentradas de ácidos sí puede ser negativo. Por ejemplo, el pH de una disolución 2,0M de HCl es –0,30